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SURFACE ENERGY ARISING FROM THE BEHAVIOR OF LIPID
MOLECULES IN THE WATER VIA I'-CONVERGENCE

LUCA LUSSARDI ® AND ALFREDO MARZOCCHI **

ABSTRACT. We show, in the framework of I'-convergence, that a surface energy of area
type arises from a probabilistic model for lipid molecules in water.

Dedicated to prof. Giuseppe Grioli,
a constant authoritative presence in Mathematical Physics

1. Introduction

In a recent paper by PELETIER & ROGER (see [5]) a simple model for a water-lipid
system has been proposed. In such a model a molecule of lipid is represented by a two-
bead chain: a head bead, which has an hydrophilic behaviour, and a tail bead, which has
an hydrophobic behaviour; heads and tails of the same molecule are connected by a spring.
The water molecules are represented by a third type of beads.

The state space at the microscopic level is determined by three positions in R?:

Xy, X5, XJ.
X are the positions of the tails, X} are the positions of the heads and X7, are the positions
of water; here,? = 1,...,Nyand j = 1,..., N,, being N, and N,, two fixed integers.
Assuming that the beads are confined in a big set Q C R®, we can consider the state space

for the system as
X = Nt No,

A microstate of the system turns out to be simply a vector of the form
1 N, 1 N 1 Ny
X=X o X0 Xy X0 X X ).

The system can be described in terms of probabilities on X’ by means of a density :

peE, £:= {zﬂ:X—)[O,—&—oo):/Xw(X)dX:l}.
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Figure 1. Lipid molecules aggregate into macroscopically surface-like structures

Actually, the observable quantities are three derived quantities, i.e. the volume fractions
of tails, heads and water respectively. More precisely, for a given probability density ¢ €
&, we denote by 71,(¢))(z) the probability that in the point 2z € € there is an head of
a lipid molecule. For tails and water we can define r;(¢)) and r,,(%) in a similar way.
The behaviour of the system is governed by two free energies, the sum of an “ideal” free
energy and the “non-ideal” one. The ideal free energy wants to represent the interaction
between beads of the same molecule, and and it penalizes head-tail distance by means of
a spring type energy. Regarding this paper, the most important energy we are interested is
the non-ideal one, which takes the form

/Q ul0)@) + @)@ )kl — 9) dady

being k a convolution kernel: we penalize the proximity of hydrophilic beads (heads and
water) and hydrophobic beads (tails). Since it is natural to assume that in any point x of )
the incompressibility condition

() (@) + ra(P)(z) + 7 (¥)(z) = 1

holds, we immediately get the next expression for the non-ideal energy:

/ (1 — r2(6) (@)re () () ke — ) dz dy.
QOxQ

Replacing k by a rescaled version k; defined by
ks(x) := 0 3k(z/6)
in [5] the authors said that one gets the I'-convergence

2 = @) @)@ ks — y) dedy el F () (1)

d QxQ
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where c(k) is a positive constant depending on the function & and

Fint(u) = { HQ(Ju) u € BV(Qa {07 1})
400 otherwise.
Here, J,, is the discontinuity set of wu, so that at the limit we obtain the area of the surface
formed by the lipid molecule. Actually, such a convergence result has not been explicitly
proved in [5].
The aim of this paper is to investigate convergence (1) proving a rigorous I'-convergence
result; something about the proof can be found in [3].

2. Some preliminary results

In this section we recall some results by ALBERTI & BELLETTINI which are contained
in papers [1] and [2].

2.1. An optimal profile problem. In order to state the I"-convergence result that we will
need, we have to investigate first an optimal profile problem.

Let p: R — [0, +00) be an even function with

+oo
/ p(®)(1 + |¢]) dt < +o0
— o0
and let W: R — [0, +00) be a continuous function which vanishes at 1 only, and tends
to +oo at infinity. Consider the minimum problem

) 1
min {4 /RXR p(t — s)(u(t) — u(s))? dtds +

—+oo

ueX

W (u(t)) dt} 2)

where
X ={u:R—[-1,1]: lim w(t)=+1, lim u(t)=—1}.

t——+o0 t——o0

It turns out, in [1], that problem (2) has always a solution: we let

1 too
a(p, W) := min { / p(t — s)(u(t) — u(s))? dtds + W (u(t)) dt}.
ueX RxR
The next proposition can be found in [1] (see cor.2.16); in what follows, for any v € X
increasing, the function u=1: (—1,1) — R is defined by

u”(t) ;== inf{s : t < u(s)}.

— 00

Proposition 2.1. Ler f(t) := max{—t,0} and let g := p * f. For any u € X increasing
and for any s € [—1, 1] we let

me=-[ (f ) - W) e ).

Then u solves the problem (2) if and only if W > H,, everywhere in [—1,1] and W = H,,
everywhere in the support of the measure (u=1)".

By means of proposition 2.1, one is able to solve explicitly the problem (2) for a suitable
choice of the potential W, as the next corollary shows.
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Corollary 2.2. Assume that W (t) > c,(1 — %) everywhere, where

+o0o
Cp = / p(t) dt.
0

Then the function u(t) := sgnt solves the problem (2). In particular, we have
—+o0
oo W)= [ Ittty @)
for any admissible p.
Proof. By definition, we immediately get u=1(t) = 0 everywhere in (—1,1). Then, for
any s € [—1, 1] we obtain
H,(s) = —¢'(0)(1 — s?).

Now,
o) = [ :O PPt~ 7) dr
hence
= [ soa-nar= [ pe-nrear
- —/_Ooop(t—r)dT: —/t+oop(r)dr
and then ¢/(0) = —c,,, from which we get

Hy(s) = c,(1—s%) < W(s).
Moreover, we notice that the support of the measure (v 1)’ is empty. Applying proposition

2.1 we deduce that u solves problem (2). Finally, (3) is a straightforward computation. [

2.2. A I'-convergence result. Let n be a positive integer and let J: R™ — [0, 400) be
such that J(z) = J(—x) for any x € R™ and

/J(a:)(l + |z]) dr < +o0.

For any > 0let J,;: R™ — [0, +00) be given by

Moreover, let W: R — [0, +00) as before, i.e. a continuous function which vanishes at 41
only, and tends to +oo at infinity. Let 2 C R"™ be an open and bounded set with Lipschitz
boundary. For any ¢ > 0 we define AB. (-, J,W): L*(Q) — [0, +oc] as
1 1
AB(u W)= - [ o= )ute) — ul)Pdedy + = [ Wulw))da.
de Jaxa € Jo
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By means of the optimal profile problem investigated in paragraph 2.1 we are able to state
the I'-convergence result for the family { AB. (-, J, W) }.~( which is contained in [2]. Fix
a unit vector e € R™. For any s € R let

JE(s) == / J(y + se) dH" " (y).
{yeRm:(y,e)=0}

The following I'-convergence-compactness result holds (see thm 1.4 in [2]).

Theorem 2.3. Let AB(-,J,W): LY(Q) — [0, +00] be given by

/ a(J"  W)dH™™ ' ifue BV(Q;{-1,1})
Ju

“+o0 otherwise in L*(L).

AB(u, J,W) :=

Then the following conditions hold:
liminf AB., (u;, J,W) > AB(u, J,W), foranyu € LY(Q), for any e \, 0

Jj—+oo

L*(Q) “)
and for any u; —" u;

1
for any u € BV (;{—1,1}) there exist €; \, 0 and u; "9y

with —1 < wuj < 1a.e. in Q and with limsup AB;  (u;, J,W) < AB(u, J,W).
j—+oo
5

In particular, it holds AB(-,J, W) EN AB(-, J,W) as e — 0T with respect to the L*-
strong topology. Moreover; if (v;) is a sequence in L*(Q) with AB;,(v;) < C for some
positive constant C' and some sequence <; \, 0 then up to subsequence (not relabelled) v;
converges to some v € BV (Q; {—1,1}) strongly in L* ().

3. Main result

In this section first of all we state a problem which turns out to be the generalization of
the problem (1).

Let k: R — [0,+00) be a continuous function with compact support. Let n be a
positive integer. We let K: R” — [0,+00) as K(z) := k(]z|). For any n > 0 let
ky: R™ — [0, 400) be given by

1 x
ky(z) = K<>
! o\

Let 2 C R™ be an open and bounded set with Lipschitz boundary. For any € > 0 we define
F.: LY(Q) — [0, 4+00] as

2
- 1 —wu(@)u(y)ks(x —y)dedy if0<u<1lae.in(
rwed 2 0wk =) ey it0< s
+o0 otherwise in L1 ().
In what follows we use the notation
1
wy = HHSMY), Ky = — [(w, e)| dH"H(w),  kn ::/ |z| K (2) dz
Wn, Sn—1 R™
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being e any unit vector in R™ and S"~! := {z € R" : |z| = 1}. Moreover, we let
Qp 1= Kl,nkn~

The main result of the paper is given by the following theorem.

Theorem 3.1. It holds F. L Fase— 0% with respect to the L'-strong topology, where

@M ML) ifue BV(9:{0,1)
Flu) = { +o0 otherwise in L().

Moreover, if (u;) is a sequence in L*(Q) with F,(u;) < C for some positive constant C
and some sequence €; \, 0 then up to subsequence (not relabelled) u; converges to some
u € BV ({0, 1}) strongly in L*(Q).

Proof. We divide the proof in several steps.
Step 1. First of all we need to relate F. with functional of type AB.. We claim that
for any u € Lt () with 0 < u < 1 a.e.in 2 and for ¢ sufficiently small we have

F.(u) = AB.(2u — 1, K, Wy) 6)
where

Wo(t) = TQ—”|1—t2\, mi= | K@)de

Indeed, let v := 2u — 1. Then, v € L'(£2) and, by direct computation, using the symmetry
of K, we have

Fi(w) = /Q (- u@)u@ks(z —y) dudy
g /QQ (1 N v(x); 1) v(y); L. (z — y) dady
N % L @)+ v)ke(w — y) dady
- i = e@)(+ vw)ke(x —y) dudy
* le QXQU —o(y) (1 + v(@))ke(x — y) dudy
= 2% (I v@)u)ke(x — ) dady
ﬁ QXQ(Q —20(z)v(y) + v2(x) + v2(y) — v (2) — v (y))k=(z — y) dzdy
_ é [ kele () — v(y) dedy + 4% /Qm(l (@) ke(z — y) dady
i AP @)ke(e —y) dady.
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Now, for any x € (), using the very definition of k., we obtain

/ka(x ) dy = /;(Q_x) K(2) d=.

Since k£ has compact support in R and €2 is bounded, for ¢ sufficiently small we get

/ K(z)dz = K(z)dz =T,
1(Q-x) R™

€

from which
/ (1 —v?(z))k(x — y) dedy = 7, / (1 —v?(z)) dx.
QxQ Q
In the same way we get
[ 0=kt - pdedy =, [ (1= 2) dy.
QxQ Q
Therefore we deduce that

R =g [ ke =)o) — o) dedy + 2 [ (1= 02a) da
= ﬁ ke(z — y)(v(z) — v(y))* dady + %/ Wo(v(z)) da
QxQ Q

= ABE(’U, K, Wo)
= ABs(QU - ]., K, W())
and this gives (6).

Step 2. We are ready to prove the compactness of equibounded (in energy) sequences.
Let (u;) be a sequence in L'(Q2) with F;, (u;) < C for some positive constant C' and
some sequence £; \, 0. Of course we can assume 0 <wuj <lae.inQforany j € N. Let
vj := 2u; — 1. Then |v;| < 1 a.e.in  and thus, by (6) we get

ng (U,J) = ABEJ, (’Uj7 K, Wo)

Therefore ABEJ (v;, K,Wy) < C and then, by theorem 2.3 we deduce that, up to subse-
quence not relabelled, v; converges to some v € BV (€; {—1,1}) strongly in L' (). It is
sufficient to let u := 3 (v + 1).

Step 3. Next, formula (6) suggests that we have to compute AB(v, K, Wy): we claim
that for any v € BV (Q2; {—1, 1}) it holds
AB(v, K,Wy) = ap,. @)

It is sufficient to prove that for any e € S™~! one has o(K¢, Wy) = a,,. First of all, we
notice that, since K is radially symmetric,

+o0 Foo
K°(s)ds = / / K(y+ se)dH" ' (y) ds
0 0 {yeR™:(y,e)=0}

- / K(z)dH" 1 (z) = 2.
{z€R":(z,e) >0} 2
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Thus, we can apply corollary 2.2 and then we get

o (K®, W) = /m oL,

— 00

Now, in order to compute the right hand-side we use the coarea formula and we obtain

“+oo “+o0
/ |t|Ke(t)dt:/ " K(y + te) dHm (y) dt

—o0 —o0 {yeR":(y,e)=0}

+oo
=/ t K(z)dH"\(z) dt
{z€R":(z,e)=t}

Y SRCELEE
~ [ o)l (@) ds
B /0+OO /{yeR”:y—r} o N ) A" ()

+oo
= k(r e dH Y (y) dr.
Lo el

It is easy to see, for instance using spherical coordinates in R™, that

/ (g, )| dHm () = / (w0, )| dH" ()
{yeR™:|y|=r} sn—t

from which we get, using again the coarea formula,

“+o0
/ K(r) / (g, )| dH™ (y) dr
0 {yeR:|y|=r}

“+o0
= KLn/ wp ™k (r) dr
0

“+oo
=Kin H LS k() dr

+oo
—Kln/ / k(r) M () dr
{zeR™: \»L|_7}

and this ends the proof of (7).

Step 4. We are ready to prove the I'-liminf inequality. Let (¢;) be a positive and infinites-

1
imal sequence and let (u;) be a sequence in L' () with u; F6Y 4 for some u € LY(Q);

we have to prove that
liminf F_(u;) > F(u). (8)

Jj—4o00
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Of course, we can assume that 0 < u; < 1 a.e.in 2, otherwise (8) is trivial. Combining
1
(6) with (4) and (7) we obtain, since 2u; — 1 "-5” 2u — 1,
liminf . (u;) = liminf AB. (2u; — 1, K, W) > AB(2u — 1, K, W))

j—+oo Jj—+oo

an / dH" 1
Jou—1

= a,H"  (J,) = F(u)

which is (8).

Step 5. We conclude the proof proving the I'-limsup inequality. Let u € BV (Q,{0,1})
we have to prove that there exist a positive and infinitesimal sequence €; and a sequence

(uj) in LY(Q) with u; EX6Y 4 such that
limsup F.; (u;) < F(u). )
Jj—+o0

Let (£;) be a positive and infinitesimal sequence and (v;) in L' (£2) be such that v, LG

2u — 1 and such that, conformally to (5),
limsup AB., (v;, K, Wy) < AB(2u — 1, K, Wy) = F(u).

j——+oo
Since |v;| < 1 we can use again (6) and conclude that, letting u; := 1 (v; + 1),
limsup F;, (u;) = limsup AB., (vj, K, Wy) < F(u)

Jj—+o0 Jj—+oo

and thus (9) holds. O

References

[1] G. Alberti and G. Bellettini, “A nonlocal anisotropic model for phase transitions. Part I: the optimal profile
problem”, Math. Ann. 310, 527-560 (1998).

[2] G.Alberti and G. Bellettini, “A nonlocal anisotropic model for phase transitions: asymptotic behavior of
rescaled energies”, European J. Appl. Math. 9, 261-284 (1998).

[3] D.Bellandi, Mechanical and Variational Models of Cell Membrane, Master degree thesis, Universita Cat-
tolica del Sacro Cuore, Brescia, Academic Year 2010/2011.

[4] J.Bourgain, H. Brezis and P. Mironescu, “Another look at Sobolev spaces”, in Optimal Control and Partial
Differential Equations; J. L. Menaldi, E. Rofman et A. Sulem, Eds. (IOS Press, 2001); a volume in honor of
A.Bensoussans’s 60 birthday, pp. 439-455.

[5S] M. A.Peletier and M.Roger, “Partial Localization, Lipid Bilayers, and the Elastica Functional”,
Arch. Rational Mech. Anal. 193, 475-537 (2009).

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 91, Suppl. No. 1, A12 (2013) [10 pages]



Al12-10 L. LUSSARDI AND A. MARZOCCHI

Universita Cattolica del Sacro Cuore
Dipartimento di Matematica e Fisica
Via Trieste, 17

1-25121 Brescia, Italy

Email:alfredo.marzocchi @unicatt.it

Article contributed to the Festschrift volume in honour of Giuseppe Grioli on the occasion of his 100th
birthday.
Received 20 October 2012; published online 29 January 2013

© 2013 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, ltaly. This article is
an open access article, licensed under a Creative Commons Attribution 3.0 Unported License.

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 91, Suppl. No. 1, A12 (2013) [10 pages]


http://creativecommons.org/licenses/by/3.0/

	1. Introduction
	2. Some preliminary results
	2.1. An optimal profile problem
	2.2. A -convergence result

	3. Main result
	References

